Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(24)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36346680

RESUMO

Muscle weakness and wasting are defining features of cancer-induced cachexia. Mitochondrial stress occurs before atrophy in certain muscles, but the possibility of heterogeneous responses between muscles and across time remains unclear. Using mice inoculated with Colon-26 cancer, we demonstrate that specific force production was reduced in quadriceps and diaphragm at 2 weeks in the absence of atrophy. At this time, pyruvate-supported mitochondrial respiration was lower in quadriceps while mitochondrial H2O2 emission was elevated in diaphragm. By 4 weeks, atrophy occurred in both muscles, but specific force production increased to control levels in quadriceps such that reductions in absolute force were due entirely to atrophy. Specific force production remained reduced in diaphragm. Mitochondrial respiration increased and H2O2 emission was unchanged in both muscles versus control while mitochondrial creatine sensitivity was reduced in quadriceps. These findings indicate muscle weakness precedes atrophy and is linked to heterogeneous mitochondrial alterations that could involve adaptive responses to metabolic stress. Eventual muscle-specific restorations in specific force and bioenergetics highlight how the effects of cancer on one muscle do not predict the response in another muscle. Exploring heterogeneous responses of muscle to cancer may reveal new mechanisms underlying distinct sensitivities, or resistance, to cancer cachexia.


Assuntos
Caquexia , Neoplasias do Colo , Camundongos , Animais , Caquexia/etiologia , Caquexia/metabolismo , Músculo Esquelético/metabolismo , Peróxido de Hidrogênio/metabolismo , Debilidade Muscular/metabolismo , Atrofia/metabolismo , Atrofia/patologia , Neoplasias do Colo/metabolismo
2.
Elife ; 72018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30511639

RESUMO

Impaired angiogenesis is a hallmark of metabolically dysfunctional adipose tissue in obesity. However, the underlying mechanisms restricting angiogenesis within this context remain ill-defined. Here, we demonstrate that induced endothelial-specific depletion of the transcription factor Forkhead Box O1 (FoxO1) in male mice led to increased vascular density in adipose tissue. Upon high-fat diet feeding, endothelial cell FoxO1-deficient mice exhibited even greater vascular remodeling in the visceral adipose depot, which was paralleled with a healthier adipose tissue expansion, higher glucose tolerance and lower fasting glycemia concomitant with enhanced lactate levels. Mechanistically, FoxO1 depletion increased endothelial proliferative and glycolytic capacities by upregulating the expression of glycolytic markers, which may account for the improvements at the tissue level ultimately impacting whole-body glucose metabolism. Altogether, these findings reveal the pivotal role of FoxO1 in controlling endothelial metabolic and angiogenic adaptations in response to high-fat diet and a contribution of the endothelium to whole-body energy homeostasis.


Assuntos
Endotélio Vascular/crescimento & desenvolvimento , Endotélio Vascular/metabolismo , Proteína Forkhead Box O1/deficiência , Obesidade/metabolismo , Animais , Dieta Hiperlipídica , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Glicólise , Homeostase , Gordura Intra-Abdominal/irrigação sanguínea , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos Knockout , Microvasos/metabolismo , Modelos Biológicos , Músculo Esquelético/irrigação sanguínea , Obesidade/sangue , Tamanho do Órgão , Especificidade de Órgãos , Fenótipo , Triglicerídeos/sangue , Regulação para Cima , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA